
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=iero20

Download by: [Hoffmann-Laroche Inc] Date: 29 October 2015, At: 07:45

Expert Review of Molecular Diagnostics

ISSN: 1473-7159 (Print) 1744-8352 (Online) Journal homepage: http://www.tandfonline.com/loi/iero20

Integrating biomarkers in clinical trials

Marc Buyse, Stefan Michiels, Daniel J Sargent, Axel Grothey, Alastair
Matheson & Aimery de Gramont

To cite this article: Marc Buyse, Stefan Michiels, Daniel J Sargent, Axel Grothey, Alastair
Matheson & Aimery de Gramont (2011) Integrating biomarkers in clinical trials, Expert Review
of Molecular Diagnostics, 11:2, 171-182

To link to this article:  http://dx.doi.org/10.1586/erm.10.120

Published online: 09 Jan 2014.

Submit your article to this journal 

Article views: 48

View related articles 

Citing articles: 2 View citing articles 

http://www.tandfonline.com/action/journalInformation?journalCode=iero20
http://www.tandfonline.com/loi/iero20
http://dx.doi.org/10.1586/erm.10.120
http://www.tandfonline.com/action/authorSubmission?journalCode=iero20&page=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=iero20&page=instructions
http://www.tandfonline.com/doi/mlt/10.1586/erm.10.120
http://www.tandfonline.com/doi/mlt/10.1586/erm.10.120
http://www.tandfonline.com/doi/citedby/10.1586/erm.10.120#tabModule
http://www.tandfonline.com/doi/citedby/10.1586/erm.10.120#tabModule


171

Review

www.expert-reviews.com ISSN 1473-7159© 2011 Expert Reviews Ltd10.1586/ERM.10.120

Clinical trials have revolutionized medicine by 
providing reliable evidence on the efficacy and 
safety of new treatments. Until recently, clini-
cal trials were designed and analyzed under the 
assumption that the effects of treatment were 
broadly similar in different individuals, and 
hence the goal of the clinical trial was primar-
ily to provide precise and unbiased estimates 
of these common effects. Today, the advent of 
molecular biology has modified the funda mental 
tenet that the effect of treatment varies only ran-
domly from patient to patient. There are indeed 
increasing numbers of treatments (especially 
targeted agents) whose effects vary widely as a 
function of individual molecular characteristics. 
When these characteristics are known early on 
in the course of developing of new treatments, 
clinical trials can be designed to target only those 
patients who are expected to benefit. However, 
more commonly, the exact molecular character-
istics that drive a patient’s response to a specific 
treatment are unknown and might only be dis-
covered during the clinical development of the 
treatment or indeed following its approval. This 
fact has profound implications for clinical trials; 
it may indeed revolutionize the way in which tri-
als are planned and executed [1–3]. The purposes 
of this article are, first, to discuss the ways in 
which biomarkers (including, but not limited to, 
molecular characteristics) are validated in clini-
cal trials, and second, to consider how they can 
be incorporated into clinical trial designs with 
the goal of optimizing the use of new therapies 

in biomarker-defined subgroups of patients. Our 
examples all come from the field of oncology, 
where efforts to develop new methodologies for 
clinical research have been most intense, but fur-
ther examples abound in the other therapeutic 
areas [4]. We will focus our discussion on statisti-
cal issues, leaving aside practical considerations 
related to the bio markers themselves, such as 
their accessibility in specific tissues (e.g., in fresh, 
frozen or formalin-fixed paraffin-embedded tis-
sue) or the ease and reliability of their quantifica-
tion (e.g., through reverse-transcriptase PCR or 
microarray), all of which greatly contribute to 
their potential for use in clinical practice.

Biomarkers versus clinical end points
Following the def inition adopted by the 
Biomarkers Definitions Working Group, a 
biomarker is defined as “a characteristic that 
is objectively measured and evaluated as an 
indicator of normal biological processes, patho-
genic processes, or pharmacologic responses to 
a therapeutic intervention” [5]. First, a distinc-
tion can be made between pharmacokinetic/
pharmacodynamic biomarkers, which we do not 
discuss in any detail in this article, and clinical 
biomarkers – that is, those having clinical util-
ity, which are the focus of this article (Table 1). 
Pharmacokinetic/pharmaco dynamic biomark-
ers are used in early drug develop ment (in vitro 
studies, animal experiments and Phase I trials), 
while clinical biomarkers are used in Phase II 
and III clinical trials. 
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Biomarkers can be contrasted with clinical end points, which 
capture information regarding how a patient feels, functions or 
survives [6]. Surrogate end points, which may themselves be based 
upon a biomarker, aim to replace a clinical end point with a faster 
and more sensitive evaluation of the effect of experi mental treat-
ments [7]. This article is concerned with bio markers that forecast 
future states – namely prognostic and predictive bio markers. 
Prognostic biomarkers predict the likely course of disease in a 
defined clinical population, irrespective of treatment; for example, 
lymph node involvement predicts a poor outcome in the manage-
ment of solid tumors, even though treatment may prolong the 
survival of patients with and without evidence of nodal involve-
ment. Predictive biomarkers forecast the likely response to treat-
ment; for instance, hormone-receptor status predicts the response 
to endocrine therapies in breast cancer. Many bio markers, such as 
hormone-receptor status in breast cancer, are in fact both prog-
nostic and predictive. The present article will focus on biomarkers 
that are measured once, typically before a treatment is started, in 
order to guide treatment choice (Table 2). We will not discuss bio-
markers that can be measured repeatedly during or after treatment, 
typically with standard techniques such as molecular imaging or 
blood sampling, even though these biomarkers arguably hold the 
greatest potential for future clinical research. Indeed, such dynamic 
biomarkers might be used to guide treatment choices if their prog-
nostic or predictive ability could be demonstrated, not just for a 
single measurement taken before treatment, but also for repeated 
measurements taken over time during and after treatment. Of even 
greater interest would be dynamic biomarkers that could predict 
the treatment effects on the clinical end points of interest, as these 
could potentially be used as surrogate end points [7–11].  

Biomarkers in clinical trials
In this article, we will discuss the validation and use of prognostic 
and predictive biomarkers in clinical trials. It will be convenient to 
distinguish several situations, depending on the type of treatment 
(standard or experimental), the type of biomarker (prognostic or 
predictive) and whether the biomarker is validated or not (Table 2). 
‘Validation’, which is discussed in greater detail elsewhere, is the 

confirmation by robust statistical methods that a candidate bio-
marker fulfils a set of conditions that are necessary and sufficient 
for its use in the clinic [12]. 

Biomarkers are typically initially identified by retrospective 
analyses of existing patient series (possibly patients treated in 
clinical trials with long-term follow-up). Biological considerations 
obviously play a key role in the initial identification of prognostic 
and predictive biomarkers and remain important during a bio-
marker’s evaluation and hopefully eventual adoption into clinical 
practice. Importantly, however, while biological considerations 
can help strengthen the case for the adoption of a biomarker, 
they cannot dispense with statistical validation of the biomarker. 

In the remainder of this article, we discuss trial designs involv-
ing biomarkers throughout the various phases of treatment and 
biomarker development. We begin our article by briefly discussing 
retrospective identification of biomarkers (often, although not 
always, using data from clinical trials: see first two rows of Table 2). 
We subsequently discuss prospective trial designs aimed at vali-
dating biomarkers using a standard therapy (third and fourth rows 
of Table 2). We then proceed to prospective trial designs aimed at 
testing an experimental therapy using validated biomarkers (fifth 
and sixth rows of Table 2). Finally, we will discuss designs that com-
bine testing an experimental therapy along with the validation of 
corresponding biomarkers (last two rows of Table 2).

Retrospective identification & validation of  
prognostic biomarkers
For a biomarker to be prognostic, an association must be demon-
strated between the value of the marker at baseline, or changes in 
the biomarker over time, and a clinical end point, independently 
of treatment. For a putative prognostic biomarker to be validated, 
its association with the clinical end point of interest should be 
demonstrated repeatedly in independent studies, preferably across 
a range of clinical situations (since, contrary to common belief, 
heterogeneity is often an asset rather than a problem from a sta-
tistical point of view). Retrospective studies may be sufficient for 
the initial identification and statistical validation of prognostic 
biomarkers, although the biomarker’s clinical utility may need 

Table 1. Classes and types of biomarkers.

Biomarker 
class

Biomarker type When measured Biomarker function

PK/PD PK Post-treatment Ensures that active drug concentrations are generated at tolerated doses

PK/PD PD proof of mechanism Post-treatment Confirms that adequate drug–target interaction has been achieved

PK/PD PD proof of concept Post-treatment Demonstrates that the desired effect is produced on tumor biology when 
the drug interacts with its intended target 

Clinical Prognostic Pre-treatment or 
post-treatment

Forecasts the likely course of disease in a defined population due to the 
underlying tumor biology, irrespective of treatment

Clinical Predictive or 
effect modifier

Pre-treatment or 
post-treatment

Predicts the likely effect or lack of effect of a specific treatment

Clinical Surrogate Post-treatment Provides early and accurate prediction of both a clinical end point, and the 
effects of treatment on this end point

PD: Pharmacodynamic; PK: Pharmacokinetic. 
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to be confirmed in prospective studies, as described later in this 
article. The retrospective phase of the validation process can be 
illustrated by the MammaPrint™ microarray-based signature 
developed by The Netherlands Cancer Institute (Amsterdam, 
The Netherlands) in a small sample of 78 untreated patients with 
the goal of predicting the occurrence of distant metastases in 
women with early breast cancer [13]. A retrospective ana lysis iden-
tified a 70-gene signature as a strong prognostic marker for the 
occurrence of metastases within 5 years of resection. In a larger 
sample of patients treated at the same institution, patients with a 
poor-prognosis MammaPrint signature were confirmed to have a 
much higher risk of distant metastases within 5 years compared 
with patients with a good-prognosis signature [14]. An indepen-
dent validation study of the signature was then conducted involv-
ing independent samples contributed by several European centers, 
with results confirming that the gene signature adds prognostic 
information over and above that provided by a binary risk classi-
fier based on the other known clinical and patho logical factors [15]. 
Although these results were impressive, the clinical usefulness of 
the signature was still in question, especially because the predic-
tive accuracy of the signature was attenuated with longer follow-
up (i.e., including patients who developed distant metastases after 
5 years of follow-up) [16,17]. The negative-predictive value of the 
signature for distant-metastasis-free survival status at 5 years after 
diagnosis was relatively high (0.9 in the Amsterdam series; 0.84 in 
the validation series), but the positive-predictive value of the sig-
nature was rather modest (0.63 in the Amsterdam series; 0.30 in 
the validation series). Hence, the signature could not be claimed, 
in and of itself, to be a sufficiently accurate predictor of which 

patients would develop metastases and could not provide the sole 
basis for a treatment decision. Overall, the clinical utility of this 
signature, that is, its ability to influence a therapeutic decision, 
remains to be confirmed in prospective trials [17,18]. In the USA, 
the development of the commonly used signature, Oncotype 
DX®, followed similar steps [19]. 

Retrospective identification of predictive biomarkers
For a biomarker to be predictive, the baseline value, or changes 
in the values of the biomarker over time, must be shown to 
predict the efficacy or toxicity of a treatment, as assessed by a 
defined clinical end point. For a putative predictive biomarker 
to be validated, its ability to predict the effects of treatment 
(or lack thereof ) should be demonstrated repeatedly in mul-
tiple studies. The statistical identification of predictive mark-
ers requires data from randomized trials that include patients 
with both high and low levels of the biomarker. Retrospective 
analyses may be sufficient to identify candidate predictive bio-
markers and validate them to a degree that enables them to be 
incorporated into trial design and clinical practice, although 
definitive evidence may still require prospective clinical trials. 
The retrospective identification and provisional validation process 
can again be illustrated by Oncotype DX in early breast cancer. 
Using data from the Southwest Oncology Group (SWOG)-8814 
trial (NCT00929591) [101], a higher recurrence score was dem-
onstrated to predict a larger benefit of chemotherapy given in 
combination with tamoxifen in postmenopausal women with 
node-positive, estrogen-receptor-positive tumors [20]. Another 
notable example of retrospective identification of a predictive 

Table 2. Trial designs using biomarkers.

Trial 
phase 

Treatment Biomarker 
type

Validated 
biomarker 

Trial design Examples

Standard Prognostic No Retrospective series MammaPrint™ in early breast cancer
Oncotype DX® in early breast cancer

Standard Predictive No Retrospective 
analyses of 
randomized trials

Oncotype DX in early breast cancer (SWOG-8814)
KRAS mutations in advanced colorectal cancer (CRYSTAL)
EGFR mutations in non-small-cell lung cancer (IPASS)

III Standard Prognostic No Clinical utility MINDACT in early breast cancer
TAILORx in early breast cancer

III Standard Predictive No Randomize-all
Interaction 
Biomarker strategy

MARVEL in non-small-cell lung cancer
P53 in advanced breast cancer
ERCC1 in non-small-cell lung cancer

II Experimental Predictive Yes Targeted
Bayesian

Herceptin in advanced breast cancer
BATTLE in non-small-cell lung cancer
I-SPY 2 in advanced breast cancer

III Experimental Predictive Yes Targeted PETACC-8 in advanced colorectal cancer
TOGA in advanced gastric cancer

II Experimental Predictive No Adaptive parallel
Tandem two-step
TTP ratio

Dovitinib in HER2-negative advanced breast cancer 
Saracatinib in pancreatic cancer
Molecular profiling in various tumor types

III Experimental Predictive No Enrichment 
Prospective subset

IPASS in non-small-cell lung cancer
SATURN in non-small-cell lung cancer

TTP: Time to progression.
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biomarker is that of the KRAS mutation in advanced colorectal 
cancer, which was demonstrated in multiple trials to predict a 
lack of effect of two EGF receptor (EGFR)-directed monoclonal 
antibodies, cetuximab and panitumumab [21–24]. Not only had a 
tumor response to these drugs very rarely, if ever, been observed 
in patients with KRAS-mutated measurable colorectal tumors, 
but the statistical test for interaction repeatedly demonstrated 
that the benefit of these drugs on overall survival was signifi-
cantly greater for patients with KRAS wild-type tumors than for 
patients with KRAS mutant tumors (who may not receive any 
benefit whatsoever) [25]. A reliable retrospective validation of a 
tissue biomarker requires the availability of biospecimens for all, 
or almost all, patients enrolled in the clinical trial in order to 
exclude potential sampling bias. For example, in a first biomarker 
ana lysis of the CRYSTAL trial (NCT00154102) [102], less than 
half of all randomized patients had been tested for the KRAS 
mutation [26]. The population of untested patients seemed to 
benefit less from cetuximab than the tested population, which 
suggested that the cetuximab benefit among patients with KRAS 
wild-type tumors might have been overestimated. In a second 
round of analyses, almost 90% of the randomized patients were 
tested for KRAS mutation, and the potential for bias was therefore 
almost entirely eliminated [25]. Some of the real-life problems with 
samples of convenience in gene-expression experiments have been 
recently illustrated by four trials with genomic subsets submitted 
to the US FDA [27]. It is also important to emphasize that even a 
retrospective validation requires a prospective ana lysis plan and 
prespecified biomarker cut points [28]. 

Prospective validation of prognostic biomarkers
Even for a prognostic biomarker that has been statistically iden-
tified and validated in one or several retrospective analyses, the 
ultimate proof-of-usefulness in the clinic may still require pro-
spective evidence from randomized trials. In particular, prospec-
tive studies are often performed to clarify the utility of the bio-
marker in patients for whom the optimal course of treatment is 
not apparent from established assessment methods. For example, 
patients with a low risk of disease recurrence might require only 
standard therapy (possibly with watchful follow-up) and patients 
at high risk require experimental therapy, but for patients with 
intermediate risk (based on the biomarker and/or clinicopatho-
logical factors), there may be uncertainty regarding the treatment 
decision. Such patients could be randomized to either standard 
or experimental treatment in prospective studies to clarify the 
role of the biomarker in determining treatment, thereby estab-
lishing the clinical utility of the biomarker. Examples of such 
biomarker-based treatment trials in early breast cancer include 
the ongoing MINDACT (NCT00433589) [103] and TAILORx 
trials (NCT00310180) [104]. Although both trials aim to confirm 
the usefulness of a gene signature (MammaPrint for MINDACT, 
Oncotype DX for TAILORx) by randomizing patients whose risk 
of disease progression is uncertain to chemotherapy versus no che-
motherapy, they have taken rather different approaches to doing 
so (Figures 1a & 1b). MINDACT randomizes patients who have 
discordant risk assessments according to their MammaPrint gene 

expression and traditional histopathological features [29], while 
TAILORx randomizes patients with an intermediate Oncotype 
DX recurrence score [30]. 

Prospective validation of predictive biomarkers
Although the predictive potential of a putative biomarker can 
be suggested by the repeated lack of treatment efficacy in the 
subset of biomarker-positive patients (such as the lack of anti-
tumor activity of cetuximab and panitumumab in patients with 
KRAS-mutated colorectal tumors), the ultimate proof that a 
biomarker is truly predictive comes from randomized trials in 
which patients are either biomarker positive or negative and 
receive either an experimental treatment or a standard treat-
ment. The most straightforward situation is one in which all 
patients are randomized without regard to biomarker status 
(‘randomize-all’ design, Figure 1C), and all patients (or a subset 
of them) are tested afterwards to determine their biomarker 
status. Although this approach could be used prospectively, it is 
more commonly used retrospectively in an ongoing prospective 
trial. For instance, in the CRYSTAL trial (NCT00154102) [102], 
patients with advanced colorectal tumors were tested for the 
KRAS mutation after being randomized to chemo therapy with 
or without cetuximab [25,26]. The same approach was adopted 
for the European Organization for Research and Treatment of 
Cancer (EORTC) P53 trial (NCT00017095) [105], in which 
patients with locally advanced/inflammatory or large operable 
breast cancer were randomized between a taxane and a non-
taxane chemotherapy regimen, and later tested for the tumor-
suppressing protein P53 using a functional assay in yeast [31]. A 
potential problem with the delayed biomarker test is that the 
biomarker status may not be available for all patients (some 
patients may refuse consent or tissue may no longer be avail-
able), in which case it is important to verify that the subset of 
patients in whom the biomarker status is known is reasonably 
representative of the total population randomized.

In the prospective setting, that is, if the biomarker is available 
prior to commencing the trial, it is desirable (though by no means 
essential) to stratify the patients by their biomarker status and 
then randomize them (‘interaction’ design, Figure 1D). The ben-
efits of stratification are balancing treatment groups with respect 
to biomarker status, while also making sure that the biomarker 
status is known for all patients. This approach was attempted in 
the MARVEL trial (NCT00738881) [106], in which patients were 
tested for EGFR status and then randomized between erlotinib or 
pemetrexed as second-line treatment of non-small-cell lung cancer. 
The ana lysis was planned to be conducted separately in marker-
positive and marker-negative patients, with the use of an interac-
tion test aimed at showing that the treatment effects differed in 
these two groups. Large numbers of events are generally required 
to reliably  detect interactions and this, in turn, generally requires 
large patient populations [32]. Realistically, therefore, prospective 
‘interaction’ trials capable of validating predictive markers are 
likely to be few in number. A meta-ana lysis of several ‘randomize-
all’ designs is often a more feasible option to validate a predictive 
biomarker, such as that which has been performed for defective 
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mismatch repair as a predictor for 5-fluorouracil efficacy in stage II 
colon cancer [33]. If there are multiple candidate predictive bio-
markers for a ‘randomize-all’ design, permutation tests have been 
proposed to control the error rate after suitable adjustment for 
multiple testing [34]. It should be noted that a significant statistical 
interaction between a biomarker and a treatment does not auto-
matically imply that the biomarker will be useful for treatment 

selection, since the treatment could be better for all patients but 
to an extent that depends on the biomarker value. A more sensible 
statistical test would exclude a magnitude of effect judged to be 
clinically worthwhile in subsets defined by the biomarker.

A final type of design addresses the clinical utility of a predic-
tive biomarker. This design compares a standard treatment with 
a biomarker-strategy that adapts the treatment according to the 

Figure 1. Trial designs. (A) Discordant risk randomized design; (B) intermediate-risk randomized design; (C) randomize-all design; 
(D) interaction or biomarker-stratified design; (E) biomarker-strategy design with standard control; (F) biomarker-strategy design with 
randomized control; (G) Bayesian adaptive Phase II design (P

1
, P

2
 and so on: probabilities of allocating treatment 1, treatment 2 and so 

on); (H) targeted or selection design; (I) adaptive parallel design; (J) tandem two-stage design.
+: Positive: -: Negative; Exp: Experimental; R: Randomization; Std: Standard. 
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biomarker status (Figure 1e) [35]. For example, the GILT docetaxel 
trial (NCT00174629) [107] used DNA excision repair protein 
(ERCC1) overexpression in tumor RNA (a marker of cisplatin 
resistance) to customize chemotherapy in patients with advanced 
non-small-cell lung cancer. Patients were randomly assigned in a 
1:2 ratio to either the control arm or the genotypic arm in which 
ERCC1 was assessed. Patients in the control arm received a stan-
dard regimen of docetaxel plus cisplatin. In the genotypic arm, 
patients with low ERCC1 levels received docetaxel plus cisplatin, 
and those with high levels received docetaxel plus gemcitabine [36]. 

There are two main concerns with this design: first, the differ-
ence between the two randomized arms is expected to be small, 
especially if the prevalence of a positive biomarker is low; and 
second, even if a difference was observed between the randomized 
arms, it could be due to a better efficacy of the experimental arm, 
regardless of the biomarker status [37–40]. The latter concern can 
be addressed in a modified design that compares the biomarker 
strategy with a randomized comparison of the same treatments, 
using the same allocation ratio to standard treatment or experi-
mental treatment in the two strategies (Figure 1F). However, the 
former concern remains as only a small difference can be expected 
between the randomized strategies, and therefore the statistical  
power for comparing the strategy arm with the nonstrategy arm 
is very low [41]. Furthermore, owing to the potential inability to 
distinguish between a prognostic effect of the biomarker and an 
effect of treatment, this design cannot identify whether differ-
ences in outcome result from one or the other of these effects. 
In general, simulation studies suggest that the two marker-based 
strategy designs are less efficient than the randomize-all traditional 
design [40–43]. 

Use of biomarkers to optimize treatment selection in 
Phase II trials
We now turn to the situation in which one or more predictive 
biomarkers are known or assumed to exist, where the purpose of 
the trial is not to formally validate these biomarkers, but rather to 
use them to optimize treatment selection. If a biomarker is truly 
predictive of the effect of an experimental treatment, then the 
best strategy will often be to target the subset of patients who are 
predicted to benefit most. For example, the clinical development 
of trastuzumab in breast cancer was restricted to patients with 
HER2/neu-amplified tumors, based both on biological consider-
ations and the lack of tumor response in advanced tumors without 
HER2/neu amplification [44,45].

The combined use of information from several biomarkers is 
also likely to improve the predictive ability of any one of them. 
This is particularly relevant for biomarkers which, when present, 
have a high sensitivity for an outcome mandating a particular 
therapy (i.e., most of the patients having these markers should 
be treated), and for biomarkers which, when absent, mitigate 
with high specificity against a particular therapy (i.e., most of 
the patients not having the marker should not be treated). A 
Bayesian approach building on these ideas has been employed 
to design several recent Phase II trials. In the BATTLE trial 
(NCT00409968) [108], for example, patients with non-small-cell 

lung cancer underwent a biopsy and were assigned to one of 
five mutually exclusive biomarker profiles based on the status of 
four biomarkers (EGFR, KRAS/serine/threonine protein kinase 
[BRAF], VEGF/VEGF receptor [VEGFR], retinoid X receptor 
[RXR]/cyclin 1) known or assumed to have predictive impact 
on the effect of the four drugs under investigation: erlotinib, 
sorafenib, vandetanib and bexarotene [46,47]. Depending on 
the biomarker group a patient belongs to, one of the drugs or a 
combination of them is a priori indicated most (represented by 
broken lines in Figure 1g). The design is ‘Bayesian adaptive’, that 
is, a Bayesian approach is used to prespecify the probabilities of 
allocating patients to any of the drugs being tested (denoted by P

1
, 

P
2
 and so on in Figure 1g), and the observed outcomes (e.g., tumor 

responses or proportions of progression-free patients at 8 weeks) 
of patients already treated are used to update these probabilities 
during the course of the trial. The BATTLE trial used a run-in 
period of equal randomization before switching to the adaptive 
randomization period. Early stopping rules were used to exclude 
possible biomarkers by treatment combinations based on pos-
terior probabilities of obtaining clinical responses in particular 
subgroups. The I-SPY 2 trial (NCT01042379) [109] uses a simi-
lar Bayesian adaptive Phase II design to test five experimental 
agents versus a standard regimen given as neoadjuvant therapy 
in patients with operable breast cancer [48]. One downside of this 
type of design is that the predictive biomarkers have to be known 
at the start of the trial, which is not always the case in practice. 
In addition, biomarkers have to be ‘ranked’ with regard to their 
predictive value for specific treatment approaches to address the 
situation of when a tumor expresses two or more biomarkers at 
the same time.

Use of biomarkers in Phase III trials
When a predictive biomarker exists for an experimental agent, the 
‘targeted’ or ‘selection’ approach seems to be most appropriate, 
whereby only biomarker-positive patients enter the randomized 
trials aimed at establishing the worth of the new agent (Figure 1H). 
Among the many examples of targeted trials, the TOGA trial 
(NCT01041404) [110] compared chemotherapy with or without 
trastuzumab in patients with HER2/neu-positive advanced gas-
tric cancer. Such trials have the capacity to confirm the useful-
ness of the marker in identifying a population in which there 
is a treatment benefit, but they do not imply that the marker is 
truly predictive since they provide no information regarding the 
lack of benefit among marker-negative patients. A key example 
of such a situation is the effect of trastuzumab in delaying or 
preventing recurrence in early breast cancer. In patients with 
HER2/neu-amplified tumors, the benefit of treatment has been 
established by several large randomized trials [49–53]. However, 
there remains an intriguing suggestion, based on patients without 
HER2/neu amplification who were accidentally entered into the 
large trials, that treatment may have similar effects in patients 
with HER2/neu-non amplified tumors [54]. Unfortunately, the 
targeted nature of the designs used prohibits the development of 
formal proof of an interaction between the effect of trastuzumab 
and HER2/neu status.
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Targeted trials can include different treatment options depend-
ing on biomarker values, as in the Eastern Cooperative Oncology 
Group (ECOG) E5202 trial (NCT00217737) [111] for patients 
with stage II colon cancer. In this trial, patients whose tumors 
have microsatellite instability (a putative predictive biomarker 
of resistance to fluoropyrimidines) and a normal 18q chromo-
some (a prognostic biomarker) will not receive adjuvant therapy, 
whereas patients whose tumors have microsatellite stability and 
18q chromosomal abnormality will receive adjuvant therapy [55]. 

One of the key considerations when choosing between a targeted 
design versus a randomize-all design, besides the opportunity to 
confirm the predictive nature of the biomarker used to select 
patients, is the statistical power of each of these designs under 
different scenarios. While the targeted design may have a much 
higher power if the biomarker is truly predictive, a randomize -all 
design may accrue many more patients, especially if the biomarker 
prevalence is low, and may therefore gain power if the treatment 
had at least some activity in all patients [40,56–60]. Once a targeted 
trial is completed, the window of opportunity to conduct another 
trial in biomarker-negative patients may also have closed.

When trials of long duration are being conducted, knowledge 
that becomes available regarding predictive biomarkers may 
require the amendment of a randomize-all design into either a 
targeted design (with complete exclusion of a subset shown to 
derive no benefit or harm from treatment) or an enriched design 
(with preferential accrual of a subset presumed to benefit from 
treatment). Examples of such situations have recently occurred 
in trials testing EGFR inhibitors for patients with colorectal can-
cer in both advanced disease and the adjuvant setting, with the 
N0147 (NCT00079274) [112], PETACC-8 (NCT00265811) [113] 
and C80405 (NCT00265850) trials [114], progressively focusing 
on patients with KRAS wild-type tumors.

Phase II codevelopment trials: combined studies of 
biomarker validation & patient selection
The Phase II and III designs discussed in the previous sections 
assumed that one or several biomarkers were available to predict 
treatment response (Table 2). However, completely validated bio-
markers are rarely available. Typically, a predictive biomarker is 
proposed because of the assumed biological mechanism of a class 
of targeted agents, or because one or more retrospective ana lyses 
identified it as being a plausible candidate. However, even a strong 
biological rationale or a single statistically significant ana lysis 
requires confirmation, and often confirmatory trials, even those  
large in size, yield conflicting results that cause confusion and 
controversy [61]. It usually takes several prospective trials for a bio-
marker to be completely validated. Hence, future trial designs will 
typically aim to validate the biomarker and establish treatment 
benefit simultaneously [62]. 

In the Phase II setting, several designs have been proposed to 
make use of a putative predictive biomarker. A first design, termed 
‘adaptive parallel’, conducts two two-stage Phase II trials in par-
allel; one in the biomarker-positive group (expected to benefit 
more from treatment) and one in the biomarker-negative group 
of patients [63,64]. After the first stage, the trial may continue in 

all patients or only in the biomarker-positive group (Figure 1i). One 
such trial that is currently recruiting is a multicenter, open-label, 
two-stage, Phase II trial of dovitinib in FGF receptor 1 (FGFR1)-
amplified and FGFR1-unamplified metastatic HER2-negative 
breast cancer (NCT00958971) [65,115]. 

A second design, termed ‘tandem two-step’, uses a predefined 
pharmacogenomic biomarker [64,66]. All patients are entered in the 
first step (or stage), regardless of the biomarker (Figure 1J). If the 
number of clinical responses that are observed in the first stage is 
large enough, the study proceeds to the second stage in the overall 
population. If the number of responses observed in the first stage 
is insufficient, the study accrues only patients in the subgroup 
predicted by the pharmacogenomic biomarker to be responders, 
and the study termination is governed by a standard optimal 
two-stage Phase II trial design in that subgroup of patients. The 
tandem two-step design was implemented in a Phase II clinical 
trial of saracatinib as monotherapy in previously treated meta-
static pancreatic cancer patients, with a primary 6-month survival 
end point (NCT00735917) [116]. The primary end point was not 
reached in the overall population, but a predefined pharmaco-
diagnostic strategy has now been employed to enrich patients 
most likely to benefit [67]. 

Bayesian adaptive randomization methods have been extended 
to accommodate the development of targeted therapies for which 
the companion biomarkers are only putative or not known at all at 
the start of the Phase II trial. The trial is divided into two stages: 
a learning stage to identify the biomarkers and an adaptive stage, 
during which these biomarkers are used for adaptive randomiza-
tion. A follow-up study of the BATTLE trial, the BATTLE-2 
trial, will test four treatments in advanced-stage lung cancer using 
this type of trial design [41]. Another Bayesian adaptive design 
uses biomarker data and clinical outcome as they become avail-
able during the course of the trial to continuously ‘learn’ about 
the most appropriate biomarkers and update the randomization 
probabilities. This design is of an exploratory nature as it does 
not control for type I errors [68]. 

A completely different type of design has recently been proposed 
that uses molecular profiling of tumor biopsies from patients who 
are refractory to conventional chemotherapy in order to iden-
tify, among a large panel of approved drugs, those that could 
potentially be active given their molecular target(s). Such a trial 
(NCT00530192) [117] was conducted in 106 patients with various 
metastatic cancers who had failed at least two lines of chemother-
apy. The primary objective was to demonstrate that their time to 
disease progression when on the therapy selected with molecular 
profiling was longer than the time to progression (TTP) on the 
last conventional treatment regimen they received; in other words, 
their TTP ratio would be greater than one [69]. Although the trial 
demonstrated a TTP ratio greater than one in about a quarter of 
all patients, the absence of a randomized control group made these 
results difficult to interpret. The TTP ratio has been used with 
some success to define the optimal dose of imatinib therapy in 
patients with gastrointestinal stromal tumors [70,71]. An attractive 
feature of this outcome measure is that patients act as their own 
control in terms of their TTP, which is appropriate for cytostatic 
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agents. However, the variability inherent in TTP for successive 
lines of treatment may however limit the ability of the TTP ratio 
to yield reliable information, and a poor correlation between the 
TTP over successive lines of treatment makes the design inef-
ficient [72]. Use of the TTP ratio is also unlikely to reach definite 
conclusions in nonrandomized designs [73]. 

Phase III codevelopment trials
Sometimes a new agent requires testing against standard therapy 
in a population thought to be especially responsive based on clini-
cal observations, rather than a known biomarker. This situation 
is illustrated by the EGFR tyrosine kinase inhibitors gefitinib 
and erlotinib, which had shown higher response rates in certain 
subsets of patients with non-small-cell tumors of the lung (espe-
cially in East Asian female patients who had never smoked and 
presented with an adenocarcinoma histology) [61]. A Phase III 
worldwide trial (NCT00242801) [118] comparing gefitinib to 
best supportive care in 1692 unselected patients with previously 
treated advanced non-small-cell lung cancer could only detect 
a nonsignificant trend in favour of gefitinib in spite of the large 
sample size (p = 0.087) [74]. By contrast, the Phase III IPASS trial 
(NCT00322452) [119] was carried out in Asia to compare single-
agent gefitinib with conventional chemotherapy in 1217 Asian 
patients who were either nonsmokers or former light smokers and 
had a previously untreated advanced adenocarcinoma [75]. After 
the trial started, it was discovered that EGFR mutations asso-
ciated with responsiveness to gefitinib were more prevalent in 
Asian populations, and indeed the better outcome of gefitinib 
over chemotherapy in the IPASS trial was entirely owing to the 
subset of patients with EGFR mutations [75,76]. Hence the IPASS 
trial had been enriched in mutation-positive patients, who rep-
resented approximately 60% of patients in whom the mutation 
status could be retrospectively determined. In patients positive 
for the EGFR mutation, progression-free survival was signifi-
cantly longer for patients treated with gefitinib than chemo-
therapy (hazard ratio [HR] for progression or death: 0.48) but 
in mutation-negative patients it was significantly shorter (HR 
for progression or death: 2.85). Similarly, with respect to overall 
survival, HRs for death in the gefitinib group in comparison with 
chemotherapy were 0.78 and 1.38, respectively [75]. These results 
were prospectively confirmed in at least two more Japanese trials 
targeting the mutated-EGFR population: these trials showed HR 
for progression or death of 0.36 (p <0.01) and 0.49 (p <0.001), 
respectively [77,78]. 

Finally, an increasingly frequent dilemma for the design of 
Phase III trials in the presence of a potential biomarker is to 
decide whether the primary ana lysis of the trial will include all 
randomized patients or the presumed subset of responsive patients 
(e.g., the biomarker-positive patients). The trade-off is clear: if all 
patients benefit from the new treatment, albeit perhaps to different 
degrees, then the power of a test that compares all randomized 
patients is likely to be higher; while if biomarker-positive patients 
benefit far more from treatment, then the power of a test that com-
pares only biomarker-positive patients is likely to be greater. The 
dilemma can be solved, at the expense of an increase in sample size, 

by performing both tests at a lower significance level, in such a way 
that the overall (also called ‘experiment-wise’) type I error remains 
controlled. This approach, in which a ‘prospective subset’ ana lysis 
is planned, was used in the SATURN trial (NCT00556712) [120] 
for patients with advanced non-small-cell lung cancer. After stan-
dard treatment with four cycles of platinum-based chemotherapy, 
patients who had not yet progressed were randomly allocated to 
receive erlotinib or placebo until progression or unacceptable tox-
icity were reached [79]. Progression-free survival after randomiza-
tion was tested in all patients at a significance level of 0.03 and 
in the patients whose tumors had EGFR protein overexpression 
at a significance level of 0.02. In this trial, the overall significance 
level was clearly maintained at 0.05 (the sum of 0.03 and 0.02), 
but the approach was overly conservative because of the correla-
tion between the two tests (overall and in the subset). A vast 
amount of literature has been devoted to less conservative, yet 
properly controlled, ways of adjusting the significance level of 
both tests [80–84]. 

In many cases, the assay used to measure biomarker positivity 
is imperfect. One possible approach in this case is to incorporate 
the positive-predictive value of the assay to estimate and test the 
treatment effects in patients who are truly biomarker positive by 
application of the expectation-maximization algorithm [85]. If 
the biomarker is known at the start of the trial but its cutoff 
value has not yet been fully established to define biomarker -
positive patients, a biomarker-adaptive design can be applied. 
This design combines a test for overall treatment effect in all 
randomly assigned patients with the establishment and validation 
of a cutpoint for the biomarker-positive patients [81].

Other adaptive designs have also been proposed to help make 
the decision for enrichment based on the results of interim analy-
ses. The approach consists of starting the trial in the entire patient 
population, and then stopping accrual in the non responsive sub-
group based either on a Bayesian decision rule [86] or on evi-
dence of low conditional power [87]. The advantage of the lat-
ter approach is that it is based on established group-sequential 
design methodology. Some authors have adopted the converse 
approach: they start the trial only in the putatively ‘targeted’ 
subgroup of patients in the first stage and allow the trial either 
to be terminated owing to futility in that subgroup after stage 1 
or they start recruitment of the entire patient population in 
stage 2 [88]. A two-stage design has also been proposed to iden-
tify a predictive gene-expression profile and to validate it in a 
single prospective trial [89]. In the first stage, the gene-expression 
profile is identified to predict whether a patient is more likely 
to benefit from the experimental treatment compared with the 
standard one, by using an inter action test. The gene-expression 
profile is prospectively applied to identify the subset of sensi-
tive patients among stage 2 patients, rather than to restrict the 
entry of stage 2 patients. The final ana lysis of the trial consists 
of a comparison of the experimental treatment with the standard 
treatment in the whole trial population, as well as in the subset 
of the stage 2 sensitive patients, with proper adjustment of the 
significance level of each test to keep the overall significance level 
under an acceptable value, such as 0.05. A more recent version of 
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Key issues

• Retrospective analyses of patient series or randomized trials can be used to identify prognostic and predictive biomarkers, but 
prospective designs are required to validate them. 

• Various Phase II trial designs have been proposed to test potential biomarkers using known drugs, or to test experimental drugs using 
known biomarkers. 

• In Phase III trials, clinical utility designs can be used to validate prognostic biomarkers, while randomize-all, interaction and  
biomarker-strategy designs can be used to validate predictive biomarkers. 

• The latter three designs suffer from low statistical power, hence trials using these designs generally require large numbers of patients. 

• Targeted trial designs are preferred when a biomarker is sufficiently reliable to exclude patients unlikely to respond to therapy, whereas 
enrichment and prospective subset designs are more suitable when a biomarker is suspected but still requires prospective validation.

this design introduces a cross-validation extension of the adaptive 
signature design that optimizes the efficiency of both the classifier 
development and the validation components [40]. A challenge for 
all these adaptive designs is the potential heterogeneity of treat-
ment effects before and after the adaptation because of changes 
in patient recruitment.

Expert commentary
The incorporation of biomarkers into clinical trials is likely to soon 
become the norm rather than the exception. We have reviewed 
the most frequently used designs in oncology, but we expect that 
many more designs will be proposed in the near future, especially 
adaptive ones. Although much of the methodological research in 
trial design is exciting and promising, one should keep in mind 
some key statistical features that are desirable in almost all situ-
ations: first and foremost, the presence of an appropriate control 
group; second, a sample size sufficient for the results of the trial 
to be reliable; and, last but not least, the capacity to question the 
assumptions implicit in the trial design, for example, in terms of 
the predictive value of a biomarker used to select therapies. 

Five-year view
Research and medical practice will be driven by combinations of 
targeted therapies based on biomarkers obtained from primary or 
metastatic tissue biopsies, other tissues and imaging techniques. 
Biomarkers will be measured at baseline to select patients and 
during the course of the trial to assess treatment efficacy and 
safety. Novel clinical trial designs will allow go/no go decisions 
to be made earlier, while the use of more sensitive end points will 
accelerate new drug registration. Large-scale randomized evidence 
will continue to be needed for reliable validation of early findings.

Financial & competing interests disclosure
Marc Buyse is a shareholder of the International Drug Development Institute. 
Daniel J Sargent declares consultancy fees from the following companies: 
Almac, DiagnoCure, Exiqon, Genomic Health and Precision Therapeutics. 
The authors have no other relevant affiliations or financial involvement with 
any organization or entity with a financial interest in or financial conflict 
with the subject matter or materials discussed in the manuscript apart from 
those disclosed. 

No writing assistance was utilized in the production of this manuscript.

Integrating biomarkers in clinical trials

References
Papers of special note have been highlighted as:
•  of interest
••  of considerable interest

1 Simon R. An agenda for clinical trials: 
clinical trials in the genomic era. Clin. 
Trials 1, 468–470 (2004).

2 Simon R. New challenges for 21st Century 
trials. Clin. Trials 4, 167–169 (2007).

3 Simon R. Clinical trials for predictive 
medicine – new challenges and paradigms. 
Clin. Trials 7(5), 516–524 (2010).

4 Simon R. Clinical trial designs for 
evaluating the medical utility of prognostic 
and predictive biomarkers in oncology. Per. 
Med. 7, 33–47 (2010).

5 Biomarkers Definitions Working Group. 
Biomarkers and surrogate end points: 
preferred definitions and conceptual 
framework. Clin. Pharmacol. Ther. 69, 
89–95 (2001).

6 Temple RJ. A regulatory authority’s 
opinion about surrogate end points. In: 

Clinical Measurement in Drug Evaluation. 
Nimmo WS, Tucker GT (Eds). Wiley, NY, 
USA, 3–22 (1995). 

7 Buyse M, Michiels S. Biomarkers and 
surrogate end points in clinical trials. In: 
Fundamentals of Oncology Clinical Trials. 
Kelly WK, Halabi S (Eds). Demos Medical 
Publishing, VA, USA 215–225 (2010).

8 Burzykowski T, Molenberghs G, Buyse M. 
(Eds). The Evaluation of Surrogate End 
Points. Springer, NY, USA (2005).

9 Buyse M, Vangeneugden T, Bijnens L et al. 
Validation of biomarkers as surrogates for 
clinical end points. In: Biomarkers in 
Clinical Drug Development. Bloom JC, 
Dean RA (Eds). Marcel Dekker, NY, USA 
149–168 (2003). 

10 Weir CJ, Walley, RJ. Statistical evaluation 
of biomarkers as surrogate end points: 
a literature review. Stat. Med. 25, 183–203 
(2006).

11 Lassere MN. The Biomarker-Surrogacy 
Evaluation Schema: a review of the 
biomarker-surrogate literature and a 

proposal for a criterion-based, 
quantitative, multidimensional 
hierarchical levels of evidence schema for 
evaluating the status of biomarkers as 
surrogate end points. Stat. Methods Med. 
Res. 17, 303–340 (2008).

12 Buyse M, Sargent D, Grothey A, 
Matheson A, de Gramont A. Biomarkers 
and surrogate end points – the challenge of 
validation. Nat. Rev. Clin. Oncol. 7, 
309–317 (2010).

13 van ‘t Veer LJ, Dai Y, van de Vijver MJ 
et al. Gene expression profiling predicts 
clinical outcome of breast cancer. Nature 
415, 530–536 (2002).

14 van de Vijver MJ, He YD, van’t Veer LJ 
et al. A gene-expression signature as a 
predictor of survival in breast cancer. 
N. Engl. J. Med. 347, 1999–2009 (2002).

15 Buyse M, Loi S, van’t Veer L et al. 
Validation and clinical utility of a 70-gene 
prognostic signature for women with 
node-negative breast cancer. J. Natl Cancer 
Inst. 98, 1183–1192 (2006).

D
ow

nl
oa

de
d 

by
 [

H
of

fm
an

n-
L

ar
oc

he
 I

nc
] 

at
 0

7:
45

 2
9 

O
ct

ob
er

 2
01

5 



Expert Rev. Mol. Diagn. 11(2), (2011)180

Review Buyse, Michiels, Sargent, Grothey, Matheson & de Gramont

16 Desmedt C, Piette F, Loi S et al. Strong 
time dependence of the 76-gene prognostic 
signature for node-negative breast cancer 
patients in the TRANSBIG multicenter 
independent validation series. Clin. Cancer 
Res. 13, 3207–3214 (2007). 

17 Hayes DF, Trock B, Harris AL. Assessing the 
clinical impact of prognostic factors: when is 
‘statistically significant’ clinically useful? 
Breast Cancer Res. 52, 305–319 (1998).

18 Sotiriou C, Pusztai L. Gene-expression 
signatures in breast cancer. N. Engl. J. Med. 
360, 790–800 (2009).

19 Subramanian J, Simon R. What should 
physicians look for in evaluating prognostic 
gene-expression signatures? Nat. Rev. Clin. 
Oncol. 7, 327–334 (2010). 

20 Albain KS, Barlow WE, Shak S et al.; 
The Breast Cancer Intergroup of North 
America. Prognostic and predictive value of 
the 21-gene recurrence score assay in 
postmenopausal women with node-
positive, oestrogen-receptor-positive breast 
cancer on chemotherapy: a retrospective 
analysis of a randomised trial. Lancet 
Oncol. 11, 55–65 (2009).

21 Di Fiore F, Blanchard F, Charbonnier F 
et al. Clinical relevance of KRAS mutation 
detection in metastatic colorectal cancer 
treated by cetuximab plus chemotherapy. 
Br. J. Cancer 96, 1166–1169 (2007).

22 Amado RG, Wolf M, Peeters M et al. 
Wild-type KRAS is required for 
panitumumab efficacy in patients with 
metastatic colorectal cancer. J. Clin. Oncol. 
26, 1626–1634 (2008).

23 Karapetis CS, Khambata-Ford S, Jonker DJ 
et al. K-ras mutations and benefit from 
cetuximab in advanced colorectal cancer. 
N. Engl. J. Med. 359, 1757–1765 (2008).

24 Van Cutsem E, Dicato M, Arber N et al. 
Molecular markers and biological targeted 
therapies in metastatic colorectal cancer: 
expert opinion and recommendations 
derived from the 11th ESMO/World 
Congress on Gastrointestinal Cancer, 
Barcelona, 2009. Ann. Oncol. 21(Suppl. 6), 
vi1–vi10 (2010).

25 Van Cutsem E, Lang I, Folprecht G et al. 
Cetuximab plus FOLFIRI: final data from 
the CRYSTAL study on the association of 
KRAS and BRAF biomarker status with 
treatment outcome. ASCO Annual 
Meeting Proceedings. J. Clin. Oncol. 28, 
3570 (2010).

26 Van Cutsem E, Kohne C.H, Hitre E et al. 
Cetuximab and chemotherapy as initial 
treatment for metastatic colorectal cancer. 
N. Engl. J. Med. 360, 1408–1417 (2009).

27 Wang SJ, O’Neill RT, Hung HJ.  
Statistical considerations in evaluating 
pharmacogenomics-based clinical effect for 
confirmatory trials. Clin. Trials 7(5), 
525–536 (2010).

28 Simon RM, Paik S, Hayes DF. Use of 
archived specimens in evaluation of 
prognostic and predictive biomarkers. 
J. Natl Cancer Inst. 101, 1446–1452 (2009).

29 Bogaerts J, Cardoso F, Buyse M et al. 
Gene signature evaluation as a prognostic 
tool: challenges in the design of the 
MINDACT trial. Nat. Clin. Pract. Oncol. 
3, 540–551 (2006).

30 Kim C, Paik S. Gene-expression-based 
prognostic assays for breast cancer. Nat. 
Rev. Clin. Oncol. 7, 340–347 (2010). 

31 Therasse P, Carbonnelle S, Bogaerts J. 
Clinical trials design and treatment 
tailoring: general principles applied to 
breast cancer research. Crit. Rev. Oncol. 
Hematol. 59, 98–105 (2006).

32 Peterson B, George SL. Sample size 
requirements and length of study for 
testing interaction in a 2 x k factorial 
design when time-to-failure is the outcome. 
Control. Clin. Trials 14, 511–522 (1993).

33 Sargent D, Marsoni S, Monges G et al. 
Defective mismatch repair as a predictive 
marker for lack of efficacy of FU-based 
adjuvant therapy in colon cancer. J. Clin. 
Oncol. 28, 3219–3227 (2010).

34 Michiels S, Potthoff RF, George SL. 
Multiple testing of treatment-effect-
modifying biomarkers in a randomized 
clinical trial with a survival end point. Stat. 
Med. (2011) (In Press).

35 Sargent DJ, Conley BA, Allegra C, 
Collette L. Clinical trial designs for 
predictive marker validation in cancer 
treatment trials. J. Clin. Oncol. 23, 
2020–2027 (2005).

36 Cobo M, Isla D, Massuti B et al. 
Customizing cisplatin based on quantitative 
excision repair cross-complementing 1 
mRNA expression: a Phase III trial in 
non-small-cell lung cancer. J. Clin. Oncol. 
25, 2747–2754 (2007).

37 Mandrekar SJ, Sargent, DJ. Clinical trial 
designs for predictive biomarker validation: 
theoretical considerations and practical 
challenges. J. Clin. Oncol. 27, 4027–4034 
(2009). 

••	 Clinically	useful	discussion	of	trial	designs	
for	predictive	biomarker	validation.

38 Mandrekar SJ, Sargent DJ. Clinical trial 
designs for predictive biomarker validation: 
one size does not fit all. J. Biopharm. Stat. 
19, 530–542 (2009).

39 Mandrekar SJ, Sargent DJ. Genomic 
advances and their impact on clinical trial 
design. Genome Med. 1(7), 69 (2009). 

40 Freidlin B, McShane LM, Korn EL. 
Randomized clinical trials with biomarkers: 
design issues. J. Natl Cancer Inst. 102, 
152–160 (2010). 

••	 Discussion	and	examples	of	various	
biomarker-based	Phase	III	trial	designs.

41 Lee JJ, Gu X, Liu S. Bayesian adaptive 
randomization designs for targeted agent 
development. Clin. Trials 7(5), 584–596 
(2010).

42 Young KY, Laird A, Zhou XH. 
The efficiency of clinical trial designs for 
predictive biomarker validation. Clin. Trials 
7(5), 557–566 (2010).

43 Hoering A, LeBlanc M, Crowley JJ. 
Randomized Phase III clinical trial designs 
for targeted agents. Clin. Cancer Res. 14, 
4358–4367 (2008). 

••	 Detailed	comparison	of	the	properties	of	
different	biomarker-based	designs	based	
on	a	simulation	study.

44 Slamon DJ, Godolphin W, Jones LA et al. 
Studies of the HER-2/neu protooncogene in 
human breast and ovarian cancer. Science 
244, 707–712 (1989).

45 Marty M, Cognetti F, Maraninchi D et al. 
Randomized Phase II trial of the efficacy 
and safety of trastuzumab combined with 
docetaxel in patients with human 
epidermal growth factor receptor 2-positive 
metastatic breast cancer administered as 
first-line treatment: the M77001 study 
group. J. Clin. Oncol. 23, 4265–4274 
(2005).

46 Lee JJ, Liu DD. A predictive probability 
design for Phase II cancer clinical trials. 
Clin. Trials 5, 93–106 (2008).

47 Zhou X, Liu S, Kim ES, Herbst RS, Lee JJ. 
Bayesian adaptive design for targeted 
therapy development in lung cancer –  
a step toward personalized medicine. Clin. 
Trials 5, 181–193 (2008). 

•	 Detailed	discussion	of	a	Bayesian	adaptive	
Phase	II	trial	design	and	comparison	with	
traditional	randomized	designs.

48 Barker AD, Sigman CC, Kelloff JG et al. 
I-SPY 2: an adaptive breast cancer trial 
design in the setting of neoadjuvant 
chemotherapy. Clin. Pharmacol. Ther. 86, 
97–100 (2009).

49 Slamon DJ, Leyland-Jones B, Shak S et al. 
Use of chemotherapy plus a monoclonal 
antibody against HER2 for metastatic 
breast cancer that overexpresses HER2. 
N. Engl. J. Med. 344, 783–792 (2001).

D
ow

nl
oa

de
d 

by
 [

H
of

fm
an

n-
L

ar
oc

he
 I

nc
] 

at
 0

7:
45

 2
9 

O
ct

ob
er

 2
01

5 



www.expert-reviews.com 181

ReviewIntegrating biomarkers in clinical trials

50 Romond EH, Perez EA, Bryant J et al. 
Trastuzumab plus adjuvant chemotherapy 
for operable HER-2 positive breast cancer. 
N. Engl. J. Med. 353, 1673–1686 (2005).

51 Piccart-Gebhart M, Procter M, 
Leyland-Jones B et al. Trastuzumab after 
adjuvant chemotherapy in HER-2 positive 
breast cancer. N. Engl. J. Med. 353, 
1659–1672 (2005).

52 Slamon DJ, Eiermann W, Robert N et al. 
Phase III randomized trial comparing 
doxorubicin and cyclophosphamide 
followed by docetaxel with doxorubicin 
and cyclophosphamide followed by 
docetaxel and trastuzumab with 
docetaxel, carboplatin and trastuzumab in 
HER2 positive early breast cancer 
patients: BCIRG 006 study. Breast Cancer 
Res. Treat. 94(Suppl. 1) (2005) 
(Abstract 1).

53 Joensuu H, Kellokumpu-Lehtinen P-L, 
Bono P et al. Adjuvant docetaxel or 
vinorelbine with or without trastuzumab 
for breast cancer. N. Engl. J. Med. 354, 
809–820 (2006).

54 Paik S, Kim C, Wolmark N. HER2 status 
and benefit from adjuvant trastuzumab in 
breast cancer. N. Engl. J. Med. 358(13), 
1409–1411 (2008).

55 Gangadhar T, Schilsky R. Molecular 
markers to individualize adjuvant therapy 
for colon cancer. Nat. Rev. Clin. Oncol. 7, 
318–325 (2010). 

56 Sargent D, Allegra C. Issues in clinical trial 
design for tumor marker studies. Semin. 
Oncol. 29, 222–230 (2002).

57 Maitournam A, Simon R. On the efficiency 
of targeted clinical trials. Stat. Med. 24, 
329–339 (2005).

58 Simon R, Maitournam A. Evaluating the 
efficiency of targeted designs for 
randomized clinical trials. Clin. Cancer Res. 
10, 6759–6763 (2004); correction and 
supplement 12, 3229 (2006).

59 Simon R. Using genomics in clinical trial 
design. Clin. Cancer Res. 14, 5984–5993 
(2008).

60 George SL. Statistical issues in 
translational cancer research. Clin. Cancer 
Res. 14, 5954–5958 (2008). 

•	 Easy-to-understand	formulae	for	the	
comparison	of	targeted	versus	nontargeted	
trial	designs.

61 Govindan R. INTERESTing biomarker to 
select IDEAL patients for epidermal 
growth factor rceptor tyrosine kinase 
inhibitors: yes, for EGFR mutation analysis, 
others, I PASS. J. Clin. Oncol. 28, 713–715 
(2010).

62 Taube SE, Clark GM, Dancey JE, 
McShane LM, Sigman CC, Gutman SI.  
A perspective on challenges and issues in 
biomarker development and drug and 
biomarker codevelopment. J. Natl Cancer 
Inst. 101, 1453–1463 (2009). 

63 Jones CL, Holmgren E. An adaptive Simon 
two-stage design for Phase 2 studies of 
targeted therapies. Contemp. Clin. Trials 
28, 654–661 (2007). 

64 McShane LM, Hunsberger S, Adjei AA. 
Effective incorporation of biomarkers into 
Phase II trials. Clin. Cancer Res. 15, 
1898–1905 (2009).

65 André F, Baselga J, Ellis MJ et al. Study 
CTKI258A2202: a multicenter, open-label 
Phase II trial of dovitinib (TKI258) in 
FGFR1-amplified and nonamplified 
HER2-negative metastatic breast cancer. 
J. Clin. Oncol. 28(Suppl. 15) (2010) 
(Abstract TPS122).

66 Pusztai L, Anderson K, Hess KR. 
Pharmacogenomic predictor discovery in 
Phase II clinical trials for breast cancer. 
Clin. Cancer Res. 13, 6080–6086 (2007).

67 Nallapareddy S, Arcaroli J, Touban B 
et al. A Phase II trial of saracatinib 
(AZD0530), an oral Src inhibitor, in 
previously treated metastatic pancreatic 
cancer. Presented at: 2010 ASCO 
Gastrointestinal Cancers Symposium. 
Orlando, FL, USA, 22–24 January 2010 
(Abstract 165).

68 Eickhoff JC, Kim K, Beach J, Kolesar JM, 
Gee JR. A Bayesian adaptive design with 
biomarkers for targeted therapies. Clin. 
Trials 7(5), 546–556 (2010).

69 Von Hoff DD, Stephenson JJ Jr, Rosen P 
et al. Pilot study using molecular profiling 
of patients’ tumors to find potential targets 
and select treatments for their refractory 
cancers. J. Clin. Oncol. 28, 4877–4833 
(2010).

70 Debiec-Rychter M, Sciot R, Le Cesne A 
et al. KIT mutations and dose selection for 
imatinib in patients with advanced 
gastrointestinal stromal tumours. Eur. 
J. Cancer 42, 1093–1103 (2006).

71 Zalcberg JR, Verwij J, Casali PG et al. 
Outcome of patients with advanced 
gastro-intestinal stromal tumours crossing 
over to a daily imatinib dose of 800 mg 
after progression on 400 mg. Eur. J. Cancer 
41, 1751–1757 (2005).

72 Mick R, Crowley JJ, Carroll RJ. Phase II 
clinical trial design for noncytotoxic 
anticancer agents for which time to disease 
progression is the primary end point. 
Control. Clin. Trials 21, 343–359 (2000).

73 Doroshow JH. Selecting systemic cancer 
therapy one patient at a time: is there a role 
for molecular profiling of individual 
patients with advanced solid tumors. 
J. Clin. Oncol. 28, 4869–4871 (2010).

74 Thatcher N, Chang A, Parikh P et al. 
Gefitinib plus best supportive care in 
previously treated patients with refractory 
advanced non-small-cell lung cancer: 
results from a randomised, placebo-
controlled, multicentre study (Iressa 
Survival Evaluation in Lung Cancer). 
Lancet 366, 1527–1537 (2005).

75 Mok TS, Wu Y-L, Thongprasert S et al. 
Gefitinib or carboplatin-paclitaxel in 
pulmonary carcinoma. N. Engl. J. Med. 
361, 947–957 (2009).

76 Lynch TJ, Bell DW, Sordella R et al. 
Activating mutations in the epidermal 
growth factor receptor underlying 
responsiveness of non–small-cell lung 
cancer to gefitinib. N. Engl. J. Med. 350, 
2129–2139 (2004).

77 Maemondo M, Inoue A, Kobayashi K et al. 
Gefitinib or chemotherapy for non-small-cell 
lung cancer with mutated EGFR. N. Engl. 
J. Med. 362(25), 2380–2388 (2010).

78 Mitsudomi T, Morita S, Yatabe Y et al. 
Gefitinib versus cisplatin plus docetaxel in 
patients with non-small-cell lung cancer 
harbouring mutations of the epidermal 
growth factor receptor (WJTOG3405): 
an open label, randomised Phase 3 trial. 
Lancet Oncol. 11(2), 121–128 (2010).

79 Cappuzzo F, Ciuleanu T, Stelmakh L et al. 
Erlotinib as maintenance treatment in 
advanced non-small-cell lung a multicentre, 
randomised, placebo-controlled Phase 3 
study. Lancet Oncol. 11(6), 521–529 (2010).

80 Wang SJ, O’Neill RT, Hung HM. 
Approaches to evaluation of treatment effect 
in randomized clinical trials with genomic 
subset. Pharm. Stat. 6, 227–244 (2007).

81 Jiang, Freidlin B, Simon R. Biomarker-
adaptive threshold design: a procedure for 
evaluating treatment with possible 
biomarker-defined subset effect. J. Natl 
Cancer Inst. 99, 1036–1043 (2007).

82 Wang SJ, Hung HM, O’Neill RT. 
Adaptive patient enrichment designs in 
therapeutic trials. Biomed. J. 51, 358–374 
(2009).

83 Alosh M, Huque MF. A flexible strategy for 
testing subgroups and overall population. 
Stat. Med. 28, 3–23 (2009). 

84 Spiessens B, Debois M. Adjusted 
significance levels for subgroup analyses in 
clinical trials. Contemp. Clin. Trials 31(6), 
647–656 (2010).

D
ow

nl
oa

de
d 

by
 [

H
of

fm
an

n-
L

ar
oc

he
 I

nc
] 

at
 0

7:
45

 2
9 

O
ct

ob
er

 2
01

5 



Expert Rev. Mol. Diagn. 11(2), (2011)182

Review Buyse, Michiels, Sargent, Grothey, Matheson & de Gramont

85 Liu JP, Lin JR, Chow SC. Inference on 
treatment effects for targeted clinical trials 
under enrichment design. Pharm. Stat. 
8(4), 356–370 (2009).

86 Brannath W, Zuber E, Branson M et al. 
Confirmatory adaptive designs with 
Bayesian decision tools for a targeted 
therapy in oncology. Stat. Med. 28, 
1445–1463 (2009).

87 Mehta C, Gao P, Bhatt DL et al. 
Optimizing trial design: sequential, 
adaptive, and enrichment strategies. 
Circulation 119, 597–605 (2009). 

••	 Group	sequential	framework	to	enrich	for	
a	targeted	subgroup	in	a	Phase	III	trial	
after	interim	analysis.

88 Liu A, Liu C, Li Q, Yu KF, Yuan VW.  
A threshold sample-enrichment approach in 
a clinical trial with heterogeneous 
subpopulations. Clin. Trials 7(5), 537–545 
(2010).

89 Freidlin B, Simon R. Adaptive signature 
design: an adaptive clinical trial design for 
generating and prospectively testing a gene 
expression signature for sensitive patients. 
Clin. Cancer Res. 11(21), 7872–7878 (2005).

Websites

101 Clinicaltrials.gov: NCT00929591. 
Tamoxifen with or without combination 
chemotherapy in postmenopausal women 
who have undergone surgery for 
breast cancer 
http://clinicaltrials.gov/ct2/
results?term=NCT00929591

102 Clinicaltrials.gov: NCT00154102. 
Cetuximab combined with irinotecan in 
first-line therapy for metastatic colorectal 
cancer (CRYSTAL) 
http://clinicaltrials.gov/ct2/
results?term=NCT00154102

103 Clinicaltrials.gov: NCT00433589. 
Genetic testing or clinical assessment in 
determining the need for chemotherapy in 
women with breast cancer that involves no 
more than 3 lymph nodes 
http://clinicaltrials.gov/ct2/
results?term=NCT00433589

104 Clinicaltrials.gov: NCT00310180. 
Hormone therapy with or without 
combination chemotherapy in treating 
women who have undergone surgery for 
node-negative breast cancer (the 
TAILORx trial) 

http://clinicaltrials.gov/ct2/
results?term=NCT00310180

105 Clinicaltrials.gov: NCT00017095. 
Biomarker (p53 gene) analysis and 
combination chemotherapy followed by 
radiation therapy and surgery in treating 
women with large operable or locally 
advanced or inflammatory breast cancer 
http://clinicaltrials.gov/ct2/
results?term=NCT00017095

106 Clinicaltrials.gov: NCT00738881. 
Pemetrexed or erlotinib as second-line 
therapy in treating patients with advanced 
non-small cell lung cancer 
http://clinicaltrials.gov/ct2/
results?term=NCT00738881

107 Clinicaltrials.gov: NCT00174629. 
GILT docetaxel – non-small cell 
lung cancer 
http://clinicaltrials.gov/ct2/
results?term=NCT00174629

108 Clinicaltrials.gov: NCT00409968. 
BATTLE program: umbrella protocol for 
patients with NSCLC 
http://clinicaltrials.gov/ct2/
results?term=NCT00409968

109 Clinicaltrials.gov: NCT01042379. 
I-SPY 2 trial: neoadjuvant and personalized 
adaptive novel agents to treat breast cancer 
http://clinicaltrials.gov/ct2/
results?term=NCT01042379

110 Clinicaltrials.gov: NCT01041404. 
TOGA study - a study of herceptin 
(Trastuzumab) in combination with 
chemotherapy compared with 
chemotherapy alone in patients with 
HER2-positive advanced gastric cancer 
http://clinicaltrials.gov/ct2/
results?term=NCT01041404

111 Clinicaltrials.gov: NCT00217737. 
Oxaliplatin, leucovorin, and fluorouracil 
with or without bevacizumab in treating 
patients who have undergone surgery for 
stage II colon cancer 
http://clinicaltrials.gov/ct2/
results?term=NCT00217737

112 Clinicaltrials.gov: NCT00079274. 
Comparison of combination chemotherapy 
regimens with or without cetuximab in 
treating patients who have undergone 
surgery for stage III colon cancer 
http://clinicaltrials.gov/ct2/
results?term=NCT00079274

113 Clinicaltrials.gov: NCT00265811. 
Combination chemotherapy with or 
without cetuximab in treating patients with 
stage III colon cancer that was completely 
removed by surgery 
http://clinicaltrials.gov/ct2/
results?term=NCT00265811

114 Clinicaltrials.gov: NCT00265850. 
Cetuximab and/or bevacizumab combined 
with combination chemotherapy in 
treating patients with metastatic 
colorectal cancer 
http://clinicaltrials.gov/ct2/
results?term=NCT00265850

115 Clinicaltrials.gov: NCT00958971. 
Safety and efficacy of TKI258 in FGFR1 
amplified and non-amplified metastatic 
HER2 negative breast cancer 
http://clinicaltrials.gov/ct2/
results?term=NCT00958971

116 Clinicaltrials.gov: NCT00735917. 
AZD0530 in treating patients with 
previously treated metastatic 
pancreatic cancer 
http://clinicaltrials.gov/ct2/
results?term=NCT00735917

117 Clinicaltrials.gov: NCT00530192. 
Molecular profiling protocol  
(SCRI-CA-001) 
http://clinicaltrials.gov/ct2/
results?term=NCT00530192

118 Clinicaltrials.gov: NCT00242801. 
Iressa vs best supportive care – 2nd/3rd line 
survival study 
http://clinicaltrials.gov/ct2/
results?term=NCT00242801

119 Clinicaltrials.gov: NCT00322452. 
First line IRESSA™ versus  
carboplatin/paclitaxel in Asia 
http://clinicaltrials.gov/ct2/
results?term=NCT00322452

120 Clinicaltrials.gov: NCT00556712. 
A study of tarceva (erlotinib) following 
platinum-based chemotherapy in patients 
with advanced, recurrent, or metastatic 
non-small cell lung cancer (NSCLC) 
http://clinicaltrials.gov/ct2/
results?term=NCT00556712

D
ow

nl
oa

de
d 

by
 [

H
of

fm
an

n-
L

ar
oc

he
 I

nc
] 

at
 0

7:
45

 2
9 

O
ct

ob
er

 2
01

5 


